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ABSTRACT

An annular cascade investigation was conducted to provide criteria
for the design of slotted rotors and stators to be tested in a subsequent
part of the overall program, The test stators were 65-series airfoils,
having a chord length of 6.5 inches and a calculated midspan D-factor
loading of 0.528 without slots, A slot located approximately midway
between the point of minimum pressure and the point of separation produced
the best performance, reducing the wake loss coefficient to about 17%
of that for the unslotted vane and increasing the lift coefficient and

air turning angle approximately 107 and 2 degrees, respectively.
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SECTION I
SUMMARY

An annular cascade investigation was conducted to provide critéria
for the design of slotted rotors and stators to be tested in a subsequent
part of the overall program. The test statorsvwere 65-series airfoils,
having a chord length of 6.5 inches and a calculated midspan D-factor
loading of 0.528 without slots., The tests were conducted at an inlet

Mach number of 0.64.

Initial tests of the unslotted stator disclosed that the minimum
pressure and separation points occurred at 12 and 85% of the chord,
respectively. Based on these data, two axial slot locations were selected.
The forward location was at 55% of the chord on the suction surface, which
was approximately halfway between the minimum pressure point and the flow
separation point. The rearward point was selected at 75% of the chord, which
was slightly ahead of the flow separation point for the unslotted configu-
ration., 1In addition to slot location, several variations of slot geometry

were tested at each slot location,

For the forward slot location, the stator wake loss coefficient varied
between 17 and 43% of the unslotted loss coefficient, depending on the
slot geometry utilized. For the rearward location, the loss coefficient
ranged between 76 and 1877 of the unslotted loss coefficient, depending
on the slot geometry employed. Data for both slot locations indicated
about the same increases in 1ift coefficient and air turning angle. The
slot configuration with the lowest wake loss coefficient showed increases
in 1ift coefficient and turning angle of about 10% and 2 degrees, respec-

tively.
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. SECTION II
INTRODUCTION

— Significant advancements in compressor technology require (1) advanced
rotor and stator concepts in terms of improved blading for high flow Mach
numbers, (2) high lift devices for stators and rotors, and (3) a more ad-
justable geometry to extend the stall-free flow range. Progress in any

of these areas may result in a sizable reduction in the number of com-
pressor stages required for any specific application, and an improved

= compressor,

Pratt & Whitney Aircraft is engaged in a program under NASA Contract
NAS3-7603 to investigate the application of high 1ift devices (in the

form of slots) to subsonic rotors and stators, A systematic investigation

|

of slots will be made to establish the feasibility and extent to which

-

slotted blade concepts can be used fo increase allowable blade loadings

and the stable operating range of compressor stages. To accomplish this

I

objective, three stator blade rows and three rotor blade rows will be

built and tested. Tests with stators will use a representative state-

I
18l

- of-the-art rotor to generate the stator inlet flow.

t

A survey of the literature on slotted airfoils was conducted to

determine if any design information applicable to compressor blading

0l

existed. A bibliography is presented in Appendix C. The results of

i

this survey showed that, whereas much data exist for isolated airfoils

i

at low Mach numbers, slot design criteria applicable to high speed

cascades are not available. It was therefore proposed, as part of the

Gt

contract design effort, to conduct a series of annular cascade tests

with slotted stators to establish preliminary criteria for the design

==E

of the slotted rotors and stators for the rotating stage test program.

A set of high turning inlet guide vanes was used to establish the

= whirl distribution into the stator test blade row of the annular cascade,

These guide vanes were designed to produce essentially a constant flow

- angle from hub to tip for the 0.8 hub-tip ratio test vehicle, The test
stator had a constant section from root to tip and had no twist. Initial
tests were conducted with the unslotted stator blades to obtain their

pressure distribution and flow separation point. On the basis of these

II-1
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tests, two chordwise slot locations were chosen, and a range of slot
geometries vas investigated for each location, Because of the preliminary
nature of these tests, only mean radius data were obtained for essentially
one flow condition, angle of attack, and Mach number. Selection of the
best slot location and geometry was based on wake loss, integrated lift
coefficient, and cascade turning. This report presents the details of

the test equipment, procedures, and test results for this preliminary

annular cascade study.

I1-2
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SECTION III
TEST EQUIPMENT

A, TEST FACILITY

The annular cascade tests were conducted in the compressor research
facility shown in figures III-1 and III-2.%* In the nonrotating mode of
operation, a J/5 engine is used in conjunction with a two-stage ejector
system to draw ambient air through the compressor rig. Flow rates up to
approximately 110 lb/sec are possible at atmospheric inlet pressure.
Ambient air enters the compressor test rig through a 78-foot inlet duct,
plenum chamber, and bellmouth inlet and exhausts through the ejector
system. Airflow rate is measured by means of an ASME thin plate orifice
located in the inlet duct. The plenum chamber is sufficiently large to
provide essentially stagnation conditions upstream of the bellmouth inlet
to the test rig, and a long diffuser ahead of the plenum ensures uniform

conditions across the chamber.

The inlet duct and plenum chamber are mounted on a track and can be
rolled away from the test rig. A pneumatic tube seal is used to prevent

air leakage between the plenum chamber and test rig.
B. COMPRESSOR TEST RIG

The compressor test rig consisted of a bellmouth inlet, support struts,
inlet guide vanes, test stators, and an exhaust diffuser section, as shown
schematically in figure III-3. Inner and outer wall diameters at axial
stations of interest are tabulated in the figure. The desired gas path was
formed by fabricated wooden filler sections. A split test case provided
convenient accessibility for blading changes without removing the entire

rig from the test stand.

The test section had a hub/tip ratio of approximately 0.8, and was
comprised of a row of 50 inlet guide vanes that set the stator inlet cen-
ditions and a row of 20 test stators that turned the flow back to the near-
axial direction. The inlet guide vane and stator blade row assemblies were
each divided into two 180-degree sections. The guide vanes were fabricated

from stainless steel and tack-welded to the shrouds. The stator and stator

*Figures are presented in Appendix D.

ITI-1
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shrouds were fabricated from aluminum and the stators were positioned with
dowel pins and held in place with machine screws, as shown in figure III-4.
For the slotted stator tests, only the vanes in the upper 180-degree section

were slotted.
C. INLET GUIDE VANE DESIGN

The inlet guide vanes were designed for a constant turning of 50.4
degrees. NACA series 63 blade sections were chosen for this blade row.

Details of this design are listed in table III-1.
D. STATOR DESIGN

Selection of the stator configuration for slot evaluation was based
on the criterion that the stator should be typical of the blading geometry
to be used in the rotating phase of the program. The 65~series airfoil
section was selected for the stator vane profile (NACA 65-(16)09). A vane
chord of 6.5 inches was chosen to permit the installation of sufficient
static pressure instrumentation, and to provide a large scale model that
would allow accurate determination of the effect of small changes in

slot geometry.

The stator vane had a constant equivalent circular arc camber of
38.85 degrees from the hub to the tip and was untwisted. The loading
(D-factor) distribution from hub to tip was 0.55 to 0.50 with a value
of 0.528 at the mean radius. The inlet Mach number varied from 0.67
at the hub to 0.61 at the tip with a mean radius value of 0.637. Other
details of the stator design are given in table III-1,

Table III-1. Summary of Design Data For The
Inlet Guide Vane and Test Stator

Inlet Guide Vane Stator

Hub Mean Tip Hub Mean Tip
Series Airfoil 63 63 63 65 65 65
Chord (in.) 3.00 3.00 3.00 6.546 6.546 6.546
Thickness Ratio 0.06 0.06 0. 06 0.09 0.09 0.09
Camber (deg)¥ -72.8 -72.8 -72.8 38.8 38.8 38.8
Inlet Metal Angle (deg)¥ -18.2 -18.2 -18.2  48.9 48.9 48.9
Exit Metal Angle (deg)¥* 54.6 54.6 54.6 10.1 10.1 10.1
Aspect Ratio 1,306 1.306 1.306 0.554 0.554 0.554

*Based on equivalent circular arc meanline.

III-2
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Table III-1. Summary of Design Data For The
Inlet Guide Vane and Test Stator (Continued)

Inlet Guide Vane Stator

Hub Mean Tip Hub Mean Tip
Blade Chord Angle (deg) 35.7 35.7 35.7 29.5 29.5 29.5
Solidity 1.412 1.294 1.200 1.234  1.237 1.054
Inlet Absolute Mach Number 0.321 0.321 0.321 0.674 0.637 0.6085
Inlet Absolute Air Angle (deg) 0.0 0.0 0.0 51.6 50.4 49.3
Exit Absolute Air Angle (deg) 51.6 50.4 49.3 22.7 21.7 21.9
Diffusion Factor 0.552 0.528 0.504
Loss Coefficient 0.139 0.139 0.139 0.0439 0.0382 0.0348
Deviation (deg) 3.0 4.2 5.3 12.6 11.6 11.8

E. INSTRUMENTATION

Instrumentation was provided primarily for the measurement of midspan
wake profile, chordwise pressure distribution, and stator air turning.
Axial location of instrumentation stations are shown in figure III-3, and
schematics showing the instrumentation in detail are presented in fig-
ures III-5 to III-9. -The two instrumentation stations of primary concern
are Stations 2 and 3A. Station 2 was located just ahead of the test

stators and Station 3A was about 1/2 chord length downstream of the stators.
1. Instrumentation for Rig Inlet Conditions

Weight flow was measured with an ASME standard thin plate orifice located

in the inlet duct.

Six static pressure taps and six temperature probes were located in the
plenum chamber for measurement of inlet total pressure and temperature.
The circumferential and radial locations for this instrumentation are shown

in figure III-6.

Three static pressure taps were located on both the inner and outer
walls upstream of the inlet guide vanes (Station 0). From a rig calibra-
tion over a wide range of weight flows, a calibration between these static
pressures and weight flow was derived and used to check subsequent weight

flow measurements.

III-3
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— 2. Stator Inlet; Station 2
: Stator inlet conditions were measured at Station 2. A section view of
— the flow path at Station 2, showing the circumferential and radial location

of the instrumentation, is presented in figure III-6. 1Inlet air angle

measurements were obtained at three circumferential locations with 20-degree
wedge traverse probes. Three Kiel probes were used for midspan total pres-

sure measurement, and a wake probe was installed to measure inlet guide

vane wake total pressure distribution. The wake probe was approximately
aligned with the average guide vane exit air angle. Three static pres-

sure taps were located on both the inner and outer wall.

A 20-degree wedge probe was added during the test program at midspan-

midchannel approximately 1/2 chord length downstream of the inlet guide
- vane row (Station 1). This probe was added for measurement of guide vane
-~ exit angle at a position that was not influenced by the guide vane wakes.

Figure III-6 shows the location of this probe in a section view of the

— flow path.
3. Stator Exit; Station 3A

Stator exit conditions were measured at Station 3A. A section view

of the flow path at this station is shown in figure III-6.

Four 20-degree wedge traverse probes were used for stator exit angle

measurement and four Kiel probes were used for midspan total pressure

measurement. Two of the traverse probes were added during the test pro-
gram. A wake probe was used for stator wake total pressure measurement.
s Eight static pressure taps were located around the outer wall to detect
the presence of flow nonuniformity that might occur as a result of having

unslotted stators in the lower half of the test section. Two static taps

were located in the inner wall.
4. Stator Surface Pressure Taps

Three test stator vanes were instrumented with static pressure taps to
provide a sufficient number of chordwise pressure measurements. The instru-

mented vanes are designated A, B, and C in figure III-5. The spanwise and

III-4
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chordal locations of the pressure taps are shown in figure III-7. The
location of taps in the slot region are shown in figures III-8 and III-9
for the forward and rear slots respectively. Figure I1I-10 illustrates

the method of installation of the pressure taps.

Installation tolerances from vane to vane caused a small variation in
stagger angle and consequently incidence angle. Because static pressure
distribution is a function of incidence angle, stagger angles are tab-

ulated below for the vanes with surface static pressure taps.

Vane A Vane B Vane C
¥°, deg Y°, deg Y°, deg
Unslotted and Forward 29.0 29.75 30.0
Slot Configurations
Rear Slot Configurations 29.0 29.17 29.08

5. Description of Probes

Details of the 20-degree wedge probe, wake probe, and Kiel probe are
shown in figure III-11. The wedge probe contained side pressure pickups
for air angle measurement, a total pressure pickup, and a total tem-

perature pickup.

The wake probe contained 16 total pressure pickups formed by

0.042-in. (OD) hypo tubing and spaced as shown in the figure.
6. Instrumentation Readout

All pressure and angle data were automatically recorded. Traverse probe
data (total pressure and air angle) were recorded on magnetic tape at the
rate of 60 samples (2.5 inches probe travel) per minute. Steady-state
pressure measurements were obtained using Scannivalve multi-channel pressure
transducer system that includes automatic data recording on IBM cards.
Temperatures were indicated on a precision potentiometer, and manually

recorded on IBM cards.

Plenum conditions and flow measuring orifice measurements were also
recorded on manometer tubes in the test stand control room to permit

setting the desired corrected flow conditions.

ITI-5
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SECTION IV
PROCEDURES

h A, TEST PROCEDURE

Two tests were conducted with the unslotted stators to provide data

on which to base slot location and to provide data for a comparison between

.
W

(L

the unslotted and slotted stator performance. Subsequent tests involved
alternative use of a forward and rear slot configuration. To simplify

testing, it was desirable to slot only the stator vanes in the upper half

e
"It

[

of the annulus. Comparisons of circumferential distributions of wall
static pressure for the unslotted tests and the initial slotted tests

indicated that although there was a definite circumferential variation

il

of static pressure, the pattern did not change appreciably when slotted

vanes were installed in only the upper half of the annulus. Therefore,

IR LT

¢!

it was considered adequate to slot only half of the test vanes for this
L preliminary slot configuration investigation. A comparison of wall static
= pressures at the stator exit with and without slotted stators in the upper

half of the test section is shown in figures IV-1 and IV-2.

The tests were conducted at an approximate stator inlet Mach number

of 0.64 and a corresponding corrected weight flow of 81.5 1b/sec. Flow

conditions were set by controlling the J75 slave engine exhaust flow

through the ejector system. When steady-state flow conditions were

established, fixed instrumentation pressure and temperature measurements
were recorded. The traverse probes were then actuated and data recorded,
— followed by a second recording of fixed instrumentation pressures and

temperatures.

Immediately before the end of each test, a solution of Blue Dykem

metal marking dye and alcohol was injected through static pressure

orifices onto the suction and pressure surfaces of the three instrumented

i

[

stator vanes to provide visual inspection of the boundary layer flow

characteristics.

B

{

mm,
L

!
i
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B. DATA REDUCTION PROCEDURE
1. Preliminary Data Reduction

An IBM computer program was used to convert magnetic-tape-recorded
data and data recorded on IBM cards to engineering units. Traverse data
(total pressure, total temperature, and air angle), obtained at approxi-
mately 0.04-inch increments across the span, were automatically plotted
(as well as tabulated). The tabulated data were used to select midspan
values of total pressure and air angle. The plotted data were inspected
for general profile shape, as well as for inlet guide vane wake and

secondary flow influences,
2. Parameter Calculation

The following parameters were calculated for the analysis of test
data and the evaluation of slotted stator performance. Symbols are defined

in Appendix A.
a. Static Pressure Coefficient

Stator vane surface static pressure measurements are presented in

the form of pressure coefficients, defined as follows:

Cp = (El - To)/ a9

where:
?ﬂ = local vane surface pressure
P, = arithmetic average of wall static pressures
upstream of stator (Station 2)
- Y .2
dp = 2 Py
Y = 1.40
My = f[Pz/le
and
P, = area-average total pressure at Station 2
(midspan)
IV-2
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b. Total Pressure Loss Coefficient

Total pressure loss coefficient for the inlet guide vanes is defined

as

Guide vane inlet dynamic pressure, was obtained as a function of inlet

9o
Mach number, MO,which was determined from isentropic flow relationships
using measured weight flow, plenum pressure and temperature, and the

appropriate flow area.

Stator vane wake total pressure loss coefficient is defined as

where ?3 is the area-average total pressure at Station 3A (stator exit).

A
Area-average total pressure at Stations 2 and 3A were obtained by manual

integration of midspan wake total pressure distributions.
c. Total Pressure Loss Parameter

Wake total pressure loss is also presented in terms of the loss

parameter

w
2-32°98 B3y

2¢g

where:

ﬁBA = stator exit air angle (Station 3A)
a

Il

solidity, ratio of chord to spacing
d., Diffusion Factor
Diffusion factor is defined as

F V2 26V2

IV-3
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where:
V2 = velocity at inlet to stator (Station 2)
V3A = velocity at exit of stator (Station 3A)
and
AVG oo change in tangential velocity across the stator

e. Lift Coefficient

Lift coefficient is defined as

ﬁpp - pgldc

C. = =

L
q,c
where:
pp = static pressure on pressure surface
P = static pressure on suction surface
¢ = gstator wvane chord length

The pressure area term, (pp - pS)dc, was obtained by manual integration
of the static pressure distributions. Each section of the slotted stator

vanes was treated as a separate airfoil for the integratiom.

f. Stator Air Turning

Because of the influence of inlet guide vane wakes and secondary flows,
the air angle measurements at midspan for different probes at a particular
station varied by several degrees. The evaluation of the effect of slots
on turning angle was therefore based on a study of individual probes
selected on the basis of their proximity to wakes and the uniformity of

indicated pressure and angle profiles in the midspan region.

IV-4



Pratt & Whitney Rircraft
PWA FR-1669

— SECTION V
RESULTS AND DISCUSSION

As stated previously, the objective of the annular cascade investi-
gation of slotted stators was to provide guidelines for the design of
— slotted rotors and stators to be tested in a subsequent part of the
overall program. In accordance with this objective, the cascade program
was limited to the evaluation, based on mean radius measurements, of
eleven slot geometry configurations and two slot locations. No attempt
was made to resolve circumferential variations in wall static pressure

and air angle; and end-wall boundary layer development through the 6.5-inch

I

| T r
ve i

= chord cascade was ignored.

The results of the annular cascade tests are presented in this section.
Tabulations of total pressure, static pressure, and air angle data are

included in Appendix B.

A. UNSLOTTED STATOR VANE PERFORMANCE
1. 1Inlet Guide Vanes

a. Exit Air Angle

Midspan air angle measurements behind the inlet guide vanes are
— summarized in table B-1. Air angle measurements obtained with each of
the four wedge traverse probes are generally within + 1.0 degree of the
average angle for each probe. The air angles for different probes range
from 45.3 to 53,7 degrees. This variation is attributed to slight
differences in the location of each probe relative to adjacent guide
vane wakes. On the basis of their overall average value, the guide vane

exit air angles indicate that the stator may have been operating at

approximately 2 degrees below design incidence, which would slightly

_— unload the stator. Since the midspan air angle measurements encompassed
— the design value of 50.4 degrees, no attempt was made to improve the

data by relocating probes to eliminate possible guide vane wake influence.

Also, it was not considered necessary within the scope of the annular

cascade program to restagger the guide vanes to increase the average exit

angle to the design value. The guide vane design exit air angle was

subsequently used in conjunction with stator exit air angles for evaluation

of stator turning.
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A typical measured spanwise distribution of air angle is compared
with the design air angle distribution in figure V-1. The slope of the
measured angle distribution matches that of the design distribution
fairly well between about 25 and 75% span at a level approximately 2

degrees below the design values,
b, Total Pressure Loss

A typical guide vane midspan wake total pressure profile is shown
in figure V-2. The profile is plotted as the ratio of local total pres-
sure to inlet guide vane total pressure, P/PO, vs channel distance in
the plane of the probe. Vertical lines in the figure indicate the mid-
channel projections of two adjacent channels, The wake probe was posi-

tioned so that it overlapped one complete channel width,

The size of the wake, with respect to the channel width, appears
large because the measuring station is about 2 chord lengths downstream
of the guide vane exit plane, The maximum local total pressure deficiency
in the wake is very small (approximately 2%). The range of integrated
values of total pressure ratio, ?é/PO, for all but two of the tests varied
between 0.9953 and 0.9959. An average value of 0.9956 was used for all
of the stator total pressure loss coefficient calculations. The guide
vane loss coefficient based on this average total pressure ratio and an
inlet Mach number of 0.324 is 0.0643, compared with the design loss

coefficient value of 0.139.
2. Stators
a. Pressure Coefficient Distribution

The pressure coefficient (Cp) curve for the unslotted stator (Configura-
tion 1) is presented in figure V-3. Table B-2 lists the pressure coefficients
for two different unslotted stator tests (Configurations 1 and lA). Note in
figure V-3 that the pressure coefficient curve flattens out at approximately
85% chord on the suction surface; this indicates apparent flow separation at
this point. This is supported by the dye patterns shown in figure V-4, which

indicate flow separation at approximately the same chordal location.

The suction surface portion of the curve in figure V-3 was drawn through
the Vane A pressure coefficient data to permit consistent comparisons with
the forward and rear slot configuration pressure coefficient distributions,

as discussed in Section V, paragraph C.2.
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b. Total Pressure Loss

Midspan wake total pressure profiles for the two unslotted stator
configuration tests are shown in figure V-5, Total pressure data are
presented in table B-3. Values of loss coefficient, w, based on integration
of the wake profiles shown in figure V-5, are 0.071 and 0,068 for Con-
figurations 1 and 1A, respectively.

W cosf
20 °
slotted stators were calculated for comparison with NACA statoer loss

Value of midspan loss parameter, and D-factor for the un-

data published in Reference 1%*. The calculated values are listed as

follows:
Configuration 1 1A
Loss parameter 0.029 0.028
D-Factor 0.442 0.466

These results are compared in figure V-6 with NASA stator mean radius
loss data for NACA 65—A10 series airfoils and a loss correlation curve
that represents root, mean, and tip section loss measurements for the
NACA 65-A1g series and double circular arc airfoils. Although the two
annular cascade test points are not in good agreement with the correlation

curve, they correlate fairly well with the NASA stator mean radius data.
¢. Air Turning Angle

Midspan stator exit air angles for the two unslotted stator tests

are listed below:

Probe Circumferential Location, deg 24 228

Stator Exit Air Angle, deg
Configuration 1 23.8 21.4
Configuration 1A 23.7 21,4

The difference in the air angle values for the two different probes
is attributed partly to their relative proximity to the adjacent stator
vane wake, The probe at circumferential position 24 degrees is in close

proximity to a vane pressure surface, whereas the probe at 228 degrees

*Reference 1: Aerodynamic Design of Axial Flow Compressors (Revised),

NASA SP-36, 1965, pp 240 and 248,

V-3
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is in close proximity to a vane suction surface. The angle measurements
obtained with the first probe are therefore considered more reliable than
those of the second probe. Based on the guide vane design exit angle of
50.4 degrees and the stator exit angles obtained with the 24-degree probe,
the unslotted stator turning was 26.6 degrees compared with a design

stator turning of 28,7 degrees,
B. SLOT CONFIGURATION SELECTION
1. Slot Location

The following general criteria were established to determine the

location of slots for the stator vanes:

1. The slot should be located upstream of the point of flow
separation. If the slot flow exhausted into a separated
region, it could not effectively turn the primary flow

back toward the suction surface.

2, The slot should be located in a region where the pressure
difference between the suction and pressure surfaces is
sufficiently high to provide high slot flow velocity.
High slot flow velocity was considered important in
permitting sufficient enerpgy addition to the suction
surface boundary layer to provide unseparated flow

essentially to the blade trailing edge.

The pressure coefficient distribution in figure V-3 indicates suction
surface boundary layer separation at about 85% chord and a maximum pres-
sure difference across the vane at approximately 12% chord (minimum
pressure point location on suction surface). On the basis of the general
criteria above, two slot locations between 12 and 85% chord were selected
for evaluation. One slot was located at 75% chord, close to the separation
point. The slot flowu at this location was expected to eliminate flow
separation by energizing the boundary layer region. The second slot was
located at 55% chord, The function of the slot flow at this location

was to energize the boundary layer prior to incipient separationm.
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2. Slot Geometry

Slot geometry variables of primary concern in this investigation were
slot contraction ratio, Yl/Yz; Coanda radius, R; and pressure surface lead-
ing edge radius, r,. Definitions of the geometry nomenclature and a summary
of the slot dimensions for all of the configurations is presented in fig-
ure V-7. Although slot angle, ¢, and pressure surface radius, R , are
considered to be significant variables, they were not systematic§11y

evaluated in this investigation.

The slot exit width, Y2, was calculated on the basis of an arbitrary
slot flow requirement equal to approximately 3% of the primary flow,
using the theoretical pressure drop between the pressure and suction
surfaces. The resulting slot configurations are shown in figures V-8
and V-9 for the forward and rear slots, respectively. Configurations
not indicated in the sequence of configuration numbers between 2 and 18
refer to test geometries and Reynolds number conditions that were omitted

from the planned test program as warranted on the basis of test results.,
C. SLOTTED STATOR VANE PERFORMANCE
1. Total Pressure Loss

Midspan total pressure data for the slotted stator configurations are
summarized in table B-3. Wake profiles for a forward slot and a rear
slot stator configuration are compared with an unslotted vane wake profile
in figures V-10 and V-11, respectively. Midspan wedge and Kiel probe
readings were translated to the wake probe channel and are superimposed
on the wake profile for comparison. The actual circumferential locations

of these probes are indicated in degrees.

Figure V-10 shows a comparison of an unslotted vane wake with the
wake obtained with forward slot configuration 9. A significant reduction
in wake size can be seen with a shift of the wake toward higher flow turning.
The slight dip in pressure at channel distances of 0.6 and 2.0 inches are
attributed to inlet guide vane wakes. A third guide vane wake appears at 3.6
inches where the stator vane wake is reduced becaﬁse of the slot. 1In general,

excellent agreement is seen between the translated probe pressures and the wake

V-5
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probe pressures., The mismatch of the two Kiel probe readings in figure
V-10 is attributed to their respective proximity to the steep part of

the wake.

The wake profile for rear slot configuration 4 is compared with an
unslotted vane wake profile in figure V-11. The rear slot uvake is
similar in size to that of the unslotted stator vane; however, a notice-

able shift of the‘wake toward higher turning is apparent.

Midspan values of loss parameter and D-factor calculated for the
slotted stator configurations are compared in figure V-12 with the NASA
stator loss data (Reference 1). The annular cascade unslotted stator
results are included for comparison. Loss coefficient, loss parameter,
and D-factor for all of the annular cascade stator test configurations
are summarized in table V-1,

Table V-1. Loss Coefficient, Loss Parameter, and D-Factor for
Annular Cascade Stator Test Configurations

Configuration D-Factor GE—3A GE-3A cosBy,

20
Unslotted

1 0.442 0.071 0.029

1A 0.466 0.068 0.028

Slot at. 55%

Chord

2 0.429 0.028 0.012

5 0.437 0.021 0.009

7 0.460 0.031 0.013

9 0.458 0.012 0.005

15 0.439 0.014 0.006

18 0.456 0.030 0.013

Slot at 75%

Chord

4 0.487 0.063 0.039

6 0.476 0.053 0.022

8 0.476 0.073 0.030

10 0.512 0.130 0.055

14 0.531 0.125 0.054

V-6
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The 557% chord slot data in figure V-12 show a significant reduction
in loss parameter level at the same general loading level as the unslotted
stators. Also, a significant improvement in loss is indicated when com-
pared to the NASA loss correlation curve and the NASA midspan stator
loss data for 65—AlO series airfoils., The losses and D-factor values
for the 75% chord slot configurations are generally higher than those
for the unslotted stator and NASA data. It was apparent from the wake
profile in figure V-11 that the rear slot location had little effect on
the size and shape of the stator wake, although the wake was shifted
about 2 degrees toward higher turning. The higher D-factor level obtained
with the rearvard slot as compared to the unslotted configuration may

be attributed to three-dimensional effects.

It is apparent from inspection of the D-factor values for all of
the stator configurations that the slots did not affect turning sufficiently
to produce a significant improvement in loading. It is considered that
secondary flow build-up at the endwalls through the relatively long
chord stator limited the loading level capability of both slotted and

unslotted stators.
2, Lift Characteristics

Stator vane static pressure distributions were manually integrated
according to the method discussed in Section IV, Paragraph B.2, to
obtain 1lift coefficient, Static pressure data, in the form of pressure
coefficients, are presented in table B-2, Pressure coefficient distri-
butions for a typical forward slot configuration (9) and a typical rear
slot configuration (4) are shown in figures V-13 and V-14, respectively,
The pressure measurements obtained on stator vanes A, B, and C (figure
I1I-5) are indicated by symbol. The difference in suction surface pres-
sure coefficients for vane A and vane B in figure V-13 is believed to
have resulted from the approximately 1.0-degree difference in stagger
angle for these two vanes, as discussed in Section III, Paragraph E.4,
The curves drawn through the data points in figure V-13 favor the vane A
data because the installed chordal stagger of vane A most nearly matches
the installed chordal stagger angles of vanes A and C for the rear slot
configurations, The suction surface pressure coefficients for vanes A
and C for the rear slot configuration in figure V-14 are seen to be in

close agreement.

V-7
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Although the pressure taps exposed in the slot regions of the three
instrumented vanes were not all perpendicular to the surface, the pres-
sures indicated by these taps were used as guides in defining the pres-
sure distribution for the two separate airfoil sections. Dashed portions
of the curves indicate where the distribution shape was estimated for

integration purposes.

It is worth noting that the level of pressure on the suction surface
at the forward slot exit is considerably lower (Cp = -1.0) than the level
of pressure at the rear slot exit (Cp = -0.3). The relatively high velocity
associated with the lower of the two pressures is a necessary part of

the desired Coanda effect at the slot exit.

Lift coefficients for all of the stator configurations are shown in
table V-2, 1In general, both the forward and rear slot configurations
appear to have produced a slight increase in lift coefficient over that
of the unslotted stator. The pressure data scatter negates a more detailed

evaluation of 1lift coefficient.

Table V-2, Lift Coefficients for Stator Configurations

Configuration Lift Coefficient
Unslotted
1 0.710
1A 0.680
Forward Slot
2 0.665
5 0.716
7 0.762
9 0.768
15 0.716
18 0.707
Rear Slot
4 0.765
0.732
8 0,744
10 0.661
14 0.705

V-8
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3. Air Turning Angle

Stator exit air angles are summarized in table B-5. Angle measure-
ments obtained with probes at circumferential locations of 24, 65, 228,
and 328 degrees are presented. The probe located at 228 degrees was in
the lower half of the annulus behind unslotted stator vanes. Air angles
obtained with the probe at 24 degrees were selected for comparison with
the unslotted stator exit air angles because of the lack of sufficient
comparative data at the other circumferential location behind the slotted
vanes, A typical air angle distribution obtained with this probe is
shown in figure V-15. The measured mean radius air angle and the design
alr angle distribution for the unslotted stator are included in the
figure for comparison. The unslotted stator exit air angle (Section V,
Paragraph A.l) was 23.8 degrees. The average stator exit air angle is
22,0 degrees for the forward slot configurations and 21.4 degrees for
the rear slot configurations, resulting in an average increase in turning
of about 2 degrees due to slots. This level of turning increase is
generally consistent with the increase in lift coefficient that resulted
from the slots., As shown in table B-5, no consistent variation in air

turning was indicated for the slot configurations tested,

V-9
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— SECTION VI
CONCLUDING REMARKS

Eleven slotted stator configurations and two slot chord locations
were evaluated in an annular cascade of 6.5-inch chord stators to provide
slot design guidelines for single stage rig blading. The relative per-

T formance characteristics of the different configurations were evaluated
on the basis of loés coefficient, D-factor loading, lift coefficient, and
= turning calculated from mean-radius measurements. Although this investi-
- gation was limited in scope, it was extremely valuable in supplying the
information needed to develop preliminary slot design criteria for appli-
gg cation to the single stage rotor and stator blading that will be tested
in a subsequent part of the overall program. A preferred slot location
at approximately half the distance between the minimum pressure point
and the separation point was determined. This slot location provided
= a greater reduction in wake loss than that obtained with a slot located
in close proximity to the separation point. A preferred slot geometry
was determined on the basis of minimum wake loss and maximum 1ift coef-

ficient.
== A, EFFECT OF SLOT LOCATION ON PERFORMANCE

Although both slot locations produced an increase in exit air angle
= and 1ift coefficient, the slot at 55% chord produced a considerably
greater reduction in wake loss than the slot at 75% chord, This result

= is attributed to two factors:

1. The available pressure drop across the stator vane (pressure-
= to-suction surface) at the 75% chord slot location was less
than the pressure drop across the vane at the 55% chord slot

location.

- 2. The suction surface boundary layer at 75% chord is thicker

than at 55% chord.

The first of the above factors results in a relatively low slot flow
velocity and thus reduces the Coanda effect. The thicker boundary

layer requires a larger pressure gradient normal to the suction surface

VI-1
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to induce freestream flow toward the surface. These factors tend to
support the result that the rear slot wake was shifted toward higher

turning but not reduced in size (figure V-11).
B. EFFECT OF SLOT GEOMETRY ON PERFORMANCE

The effect of slot geometry on performance was less pronounced than
t he effect of slot location. The geometry parameter that produced the
most significant reduction in wake size for a forward slot configuration
was the rear section leading edge radius, r;, (figure V-7). When this
radius was increased from 0.028 to 0.056 in., the wake loss coefficient

decreased from 0.031 to 0.012.

The Coanda radius was the most significant geometry parameter that
was varied for the rear slot configuration. A slight increase in Coanda
radius produced a slight decrease in wake loss (0.063 to 0.053). Sub-
sequent increase in Coanda radius resulted in a large increase in wake
loss coefficient (up to 0.130). This change in wake loss suggests the
probability of an optimum Coanda radius. Insufficient data were obtained

to evaluate the optimum Coanda radius for the forward slot location,

Additional two-dimensional or annular cascade investigation is needed
toc provide basic information on the mechanism of slot effectiveness. Such
investigation should include systematic evaluation of slot location and
geometry over a range of Mach numbers, incidence angles, and loading

levels.

VI-2
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APPENDIX A
LIST OF SYMBOLS

Description

Chord length

Lift coefficient

Static pressure coefficient
Mach number

Static pressure

Total pressure

Dynamic pressure, 1/2PV2
Blade spacing

Velocity

Air angle, measured from axial line
Ratio of specific heats
Blade chord angle

Solidity

Total pressure loss coefficient

Local vane surface point
Pressure surface

Suction surface
Tangential

Guide vane inlet station
Guide wvane exit station
Stator inlet station

Stator exit station

PWA FR-1669

Units

in.

psia
psia
psia
in.
ft/sec

deg

deg

c/s
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APPENDIX B
TABULATED DATA

Mean radius and wall static pressure data for all of the test con-

figurations are presented in this appendix. The following tabulations

are included:

Table B-1. . . . . . . . Guide Vane Exit Air Angle,
midspan

Table B-2. . . . . . . . Vane Surface Static Pressure
Coefficient

Table B-3. . . . . . . . Total Pressure, midspan

Table B-4. . . . . . . . Wall Static Pressure, Weight Flow,

Mach Number, Dynamic Pressure

Table B-5. . . . . . . . Stator Exit Air Angle, midspan
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Configuration

Unslotted
1
1A

Forward Slot
2
5
7
9
15
18

Rear Slot
4
6
8
10
L4
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Table B~1. Guide Vane Exit Air Angle

Guide Vane Exit Air Angle
(Midspan) B, deg

Station
1 2
Clrcumferentlal 18 143 243 393
Location, deg
46.9 51.8 48.0
47 .4 51.8 47.9
42.5 52.3 47 .4
45.4 51.5 48.5
45.4 51.4 50.0
45.9 51.7 47.5
48.3 45.8 53.7 47 .4
50,1 49,4 47 .6
46.0 51.3 47 .3
' 45.6 50.6 48.5
45,8 51.0 48.9
48.2 46.3 51.8 47.1
46,4 45.3 51.4 46.8
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PWA FR-1669
— Table B-5. Stator Exit Air Angle, Midspan
_ Configuration Stator Exit Air Angle,
Midspan, deg

B Clrcumferentlal 24 65 228 328
- Location, deg
i Unslotted
—_ 1 23.8 21.4

1A 23.7 21.4
. Average 23.7
- Forward Slot

2 23.5 21.9
. 5 21.9 18.5 22.9
— 7 21.9 18.3 22.3

9 21.7 18.2 23.2
P 15 24.,3%  21.9 20.0 21.9
[ 18 21.2 22.4 21.2 22.6

Average 22.0

, Rear Slot
- 4 21.6 21.3 22.2
. 6 21.7 22.6
8 23.9 18.9 22.8
- 10 21.4 22.8 19.3 244

14 18.6 21.9 19.0 19.9

Average 21.4

*Not used to compute average.
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Stability Characteristics of an Airplane Model with a 35° Sweptback
Wing,'" Queijo, M. J., Byron M., Jaquet, and Walter D. Wolhart., 1954,
(NACA Rept. 1203, Supersedes RM L50K07; RM L51H17).

"Investigation of the Effects of Wing and Tail Modifications on the
Low-Speed Stability Characteristics of a Model having a Thin 40°

Swept Wing of Aspect Ratio 3,5," Weil, Joseph, William C. Sleeman, Jr.,
and Andrew L. Byrnes, Jr. April 1953. (NACA RM L53C09).

"Lift and Pitching Moment at Low Speeds of the NACA 64A010 Airfoil
Section Equipped with Various Combinations of a Leading-Edge Slat,
Leading-Edge Flap, Split Flap, and Double-Slotted Flap,” Kelly, John A.
and Nora-Lee F. Hayter. September 1953, (NACA TN 3007).

"The Use of Area Suction for the Purpose of Improving Trailing-Edge
Flap Effectiveness on a 35° Sweptback Wing," Cook, Woodrow L.,
Curt A, Holzhauser, and Mark W. Kelly. July 1953. (NACA RM A53E06).

"Effect of High-Lift Devices on the Static-Lateral-Stability
Derivatives of a 45° Sweptback Wing of Aspect Ratio 4.0 and Taper
Ratio 0.6 in Combination with a Body," Lichtenstein, Jacob H.
and James L. Williams. November 1952. (NACA TN 2819).

"Effects of Several High-Lift and Stall-Control Devices on the Aero-
dynamic Characteristics of a Semispan 49° Sweptback Wing,'" Barnett,
U, Reed, Jr., and Stanley Lipson. September 1952. (NACA RM L52D17a).

"Full-Scale Wind-Tunnel Investigation of the Effects of Wing Modifica-
tions and Horizontal-Tail Location on the Low-Speed Static Longitudinal
Characteristics of a 35° Swept-Wing Airplane," Maki, Ralph L.

April 1952, (NACA RM A52B05).
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"Lateral-Control Investigation on a 37° Sweptback Wing of Aspect
Ratio 6 at a Reynolds Number of 6,800,000," Graham, Robert R. and
William Koven, January 27, 1949, (NACA RM L8K12).

"Summary of Section Data on Trailing-Edge High-Lift Devices,"
Cahill, Jones F, 1949, (NACA Rept. 938).

"Iwo-Dimensional Wind-Tunnel Investigation of a 6-Percent-Thick
Symmetrical Circular-Arc Airfoil Section with Leading-Edge and
Trailing-Edge High-Lift Devices Deflected in Combination,"
Nuber, Robert J. and Gail A. Cheesman, September 6, 1949,
(NACA RM 19G20).

"The Effect of Boundary-Layer Control by Suction and of Several High-
Lift Devices on the Aerodynamic Characteristics in Yaw of a 47.5°
Sweptback Wing-Fuselage Combination," Pasamanick, Jerome.

October 28, 1948, (NACA RM L8E21).

"The Effects of High-Lift Devices on the Low-Speed Stability Charac-
teristics of a Tapered 37.5° Sweptback Wing of Aspect Ratio 3 in Straight
and Rolling Flow,'" Queijo, M. J. and Jacob H. Lichtenstein,

November 9, 1948. (NACA RM L8I03).

"High-Speed Stability and Control Characteristics of a Fighter Airplane
Model with a Swept-Back Wing and Tail," Morrill, Charles P. Jr., and
Lee E. Boddy. April 14, 1948, (NACA RM A7K28).

"Longitudinal Stability Characteristics of a 42° Sweptback Wing and
Tail Combination at a Reynolds Number of 6.8 x 106. Spooner, Stanley H.
and Albert P. Martina. July 22, 1948, (NACA RM L8E12).

"Wind-Tunnel Investigation of Boundary-Layer Control by Suction on
NACA 65-424 Airfoil with Double Slotted Flap," Racisz, Stanley F.
and John H, Quinn, Jr. June 1948. (NACA TN 1631).

"Wind-Tunnel Investigation of High-Lift and Stall-Control Devices on
a 37° Sweptback Wing of Aspect Ratio 6 at High Reynolds Numbers,"
Koven, William and Robert R. Graham. September 2, 1948,

(NACA RM L8D29).

"Aerodynamic Data for a Wing Section of the Republic XF-12 Airplane
Equipped with a Double Slotted Flap," Cahill, Jones F. January 1946.
(NACA RM L6A08a).

"Drag Tests of an NACA 65(215)-114, a = 1.0 Practical-Construction
Airfoil Section Equipped with a 0,295-Airfoil-Chord Slotted Flap,"
Quinn, John H., Jr. April 1947. (NACA TN 1236).

"Investigation of High-Lift and Stall-Control Devices on an NACA 64-Series
42° Sweptback Wing with and without Fuselage," Graham, Robert R. and
D. William Conner., October 14, 1947. (NACA RM L7G09).
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35. "An Investigation of a 0.16-Scale Model of the Douglas X-3 Airplane
to Determine Means of Improving the Low-Speed Longitudinal Stability
, and Control Characteristics,'" McKee, John W, and John M. Riebe.
e November 1952, (NACA RM L52HO01).
v 36. '"Low-Speed Aerodynamic Characteristics of a Large-Scale 45° Swept-

— Back Wing with Partial-Span Slats, Double-Slotted Flaps, and Ailerons,"
James, Harry A, April 1952. (NACA RM AS52B19).

37. "Low-Speed Aerodynamic Characteristics of a Large-Scale 60° Swept-Back
Wing with High Lift Devices,'" Kelly, Mark W, March 1952. (NACA RM A52Al4a),

B 38. "A Summary and Analysis of the Low-Speed Longitudinal Characteristics
;- of Swept Wings at High Reynolds Number,'" Furlong, G. Chester and James
G. McHugh. August 1952, (NACA RM L52D16).

o 39. 'Wind-Tunnel Tests on the 30 Percent Symmetrical Griffith Aerofoil with
Ejection of Air at the Slots,'" Gregory, N., W. S. Walker, and W. G.
Raymer. Gt. Brit., Aeronautical Research Council, Reports and
Memoranda No. 2475, 1952 (November 18, 1946). British Information
Services, New York,

B 40. "Effect of Vertical-Tail Area and Length on the Yawing Stability
- Characteristics of a Model Having a 45° Sweptback Wing," Letko, William.
May 1951. (NACA TN 2358).

— 41. '"Experimental Investigation of the Effect of Vertical-Tail Size and
Length and of Fuselage Shape and Length on the Static Lateral Stability
_ Characteristics of a Model with 45° Sweptback Wing and Tail Surfaces,"
- Queijo, M. J. and Walter D. Wolhart., 1951. (NACA Rept. 1049,

o Formerly TN 2168).

42. viInvestigation at Low Speed of 45° and 60° Sweptback, Tapered, Low-
Drag Wings, Equipped with Various Types of Full-Span, Trailing-Edge
Flaps," Harper, John J.,Georgia Institute of Technology. October 1951.
(NACA TN 2468).

43. '"Pressure Distribution at Low Speed on a 1/4-Scale Bell X-5 Airplane
Model," Kemp, William B, Jr. and Albert G. Few, Jr. December 1951.
o (NACA RM L51125).
LI =",
= 44. "A Study of the Use of Experimental Stability Derivatives in the
ig Calculation of the Lateral Disturbed Motions of a Swept-Wing Airplane
- and Comparison with Flight Results," Bird, John D. and Byron M. Jaquet.
. 1951, (NACA Rept., 1031, Formerly TN 2013).

45. 'Wind-Tunnel Investigation of the Effects of Horizontal-Tail Position
on the Low-Speed Longitudinal Stability Characteristics of an Airplane
Model with a 35° Sweptback Wing Equipped with Chordwise Fences,"
Queijo, M. J. and Walter D, Wolhart, November 1951, (NACA RM L51H17).
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46. "Experimental Investigation of the Effect of Vertical-Tail Size and
Length and of Fuselage Shape and Length on the Static Lateral Stability
Characteristics of a Model with 45° Sweptback Wing and Tail Surfaces,"

— Queijo, M. J. and Walter D, Wolhart. August 1950, (NACA TN 2168).

- 47, '"Investigation of Boundary-Layer Control to Improve the Lift and Drag
o Characteristics of the NACA 652-415 Airfoil Section with Double
Slotted and Plain Flaps," Horton, Elmer A., Stanley F. Racisz, and
Nicholas J. Paradiso. August 1950. (NACA TN 2149).

= 48. '"Low-Speed Lateral Stability and Aileron-Effectiveness Characteristics

at a Reynolds Number of 3.5 x 106 of a Wing with Leading-Edge Sweepback
= Decreasing from 45° at the Root to 20° at the Tip,'" Lange, Roy H. and
— Huel C. McLemore. July 6, 1950, (NACA RM L50D14).

49. "Maximum Lift and Longitudinal Stability Characteristics at Reynolds
Numbers up to 7.8 x 106 of a 35° Sweptforward Wing Equipped with
High-Lift and Stall-Control Devices, Fuselage, and Horizontal Tail,"
Martina, Albert P, and Owen J. Deters. February 9, 1950. (NACA RM L9H18a).

= 50. 'Maximum-Lift Characteristics of a Wing with the Leading-Edge Sweep-

back Decreasing from 45° at the Root to 20° at the Tip at Reynolds
=3 Numbers from 2.4 x 106 to 6.0 x 106," Lange, Roy H. July 6, 1950.
- (NACA RM L50A04a). .

51. "Positioning Investigation of Single Slotted Flaps on a 47.7°
Sweptback Wing at Reynolds Numbers of 4.0 x 106 and 6.0 x 106,"
Spooner, Stanley H, and Ernst F. Mollenberg. October 9, 1950.
(NACA RM L50H29).

i 52. "Stability and Control Characteristics of a 1/4-Scale Bell X-5 Airplane
Model in the Landing Configuration,' Becht, Robert E. December 18, 1950,
= (NACA RM 1L50J27).

53. '"Stability and Control Characteristics at Low Speed of a 1/4-Scale
= Bell X-5 Airplane Model., Lateral and Directional Stability and
= Control," Kemp, William B. Jr. and Robert E. Becht., June 20, 1950,
(NACA RM L50Cl7a).

_ 54. "Stability and Control Characteristics at Low Speed of a 1/4-Scale

it Bell X-5 Airplane Model. Longitudinal Stability and Control,"
Kemp, William B, Jr., Robert E. Becht and Albert G. Few, Jr.

= March 14, 1950. (NACA RM L9KO08),

55. "A Study of the Use of Experimental Stability Derivatives in the
2= Calculation of the Lateral Disturbed Motions of a Swept-Wing
Airplane and Comparison with Flight Results,'" Bird, John D. and
Byron M, Jaquet. January 1950. (NACA TN 2013).

56. "An Investigation of the Spin and Recovery Characteristics of a
1/25-Scale Model of the Douglas D-558-I1 Airplane," Scher, Stanley H.
and Lawrence J. Gale, January 18, 1949, (NACA RM L8K19a).
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"Tests of the NACA 6471A212 Airfoil Section with a Slat, a Double
Slotted Flap, and Boundary-Layer Control by Suction," Quinn, John H,,Jr.
May 1947, (NACA TN 1293).

"Two-Dimensional Wind-Tunnel Investigation of Four Types of High-
Lift Flap on an NACA 65-210 Airfoil Section," Cahill, Jones F.
February 1947. (NACA TN 1191).

'"Wind-Tunnel Tests at Low Speed of Swept and Yawed Wings having
Various Plan Forms,' Purser, Paul E, and M. Leroy Spearman.
May 1947 (NACA RM L7D23).

"Wind-Tunnel Investigation of the NACA 654-421 Airfoil Section with
a Double Slotted Flap and Boundary-Layer Control by Suction,"
Quinn, John H. Jr. July 1947, (NACA TN 1395).

"Two-Dimensional Wind-Tunnel Investigation of Two NACA Low-Drag
Airfoil Sections Equipped with Slotted Flaps and a Plain NACA Low-
Drag Airfoil Section for XF6U-1 Airplane,'" Loftin, Lawrence K., Jr.
and Fred J. Rice, Jr. January 1946. (NACA MR L5L11).

"Lift Tests of a 0.,1536c Thick Douglas Airfoil Section of NACA 7-Series
Type Equipped with a Lateral-Control Device for Use with a Full-Span
Double-Slotted Flap on the C-74 Airplane," Nuber, Robert J. and

Fred J. Rice, Jr, March 1945. (NACA MR L5C24a),

"Effect of Compressibility on Pressure Distribution over an Airfoil
with a Slotted Frise Aileron," Luoma, Arvo A. July 1944, (WACA
Advance Confidential Report No. L4G12).

"Tests of a Griffith Aerofoil in the 13 ft x 9 ft Wind Tunnel,"

I - Wind Tunnel Technique and Interim Note. E. J. Richards.

IT - Effect of Concavity on Drag, E. J., Richards, W. S. Walker,

and J. R. Greening.

III - The Effects of Wide Slots and of Premature Transition to
Turbulence - E. J. Richards and W. S, Walker.

IV - Lift, Drag, Pitching Moments and Velocity Distributions -

E. J. Richards and W. S. Walker.

Great Britain, Aeronautical Research Council, Reports and Memoranda,
No. 2148, March 1944.

"Effect of Wing Leading-Edge Slots on the Spin and Recovery Charac-
teristics of Airplanes,'" Neihouse, Anshal I. and Marvin Pitkin.
April 1943. (NACA Advance Restricted Report No. 3D29).

"Test of NACA 66,2-116, a = 0.6 Airfoil Section Fitted with Pres-
sure Balance and Slotted Flaps for the Wing of the XP-63 Airplane,"”
Underwood, William J. and Frank T, Abbott, Jr. May 1942.

(NACA Memorandum Report). (Wartime Report No. L-701).

"Wind Tunnel Investigation of an NACA 23012 Airfoil with a Handley

Page Slot and Two Flap Arrangements,' Schuldenfrei, Marvin J.
February 1942 (NACA Advanced Restricted Report). (Wartime Report No. L-261)

c-7



lu s

(R

"

i

‘!‘ ﬂﬂ
ikl il

i

v

oo

o

]

44 4]

il
|
i

L

L]

i

80.

81.

82,

83.

84,

85.

86.

87.

Pratt & Whitney Rircraft
PWA FR-1669

"Wind Tunnel Investigation of a Tapered Wing with a Plug-Type Spoiler-
Slot Aileron and Full-Span Slotted Flaps,'" Lowry, John G. and

Robert B, Liddell. July 1942, (NACA Advance Restricted Report).
(Wartime Report No. L-250).

"Lift and Drag Characteristics of a Low-Drag Airfoil with Slotted
Flap Submitted by Curtiss-Wright Corporation,' Abbott, I. H,
December 1941. (NACA Memorandum Report). (Wartime Report No. L-703).

"Wind Tunnel Investigation of a Plain and a Slot-Lip Aileron on a

Wing with a Full-Span Flap Consisting of an Inboard Fowler and an
Outboard Slotted Flap,' Rogallo, F. M. and Marvin Schuldenfrei.

June 1941 (NACA Advance Restricted Report). (Wartime Report No. L-421).

"Wind-Tunnel Investigation of a Spoiler-Slot Aileron on an NACA 23012
Airfoil with a Full-Span Fowler Flap," Rogallo, F. M, and

Bartholomew S. Spano., December 1941, (NACA Advance Restricted
Report)., (Wartime Report No. L-376).

"Free Streamline Suction Slots,' Watson, E. J., Great Britain Aero-
nautical Research Council, Reports and Memoranda No. 2177, February
1946,

"Tests on an Aerofoil with 20 Percent Slotted Flap and an Auxiliary
Flap in the Compressed Air Tunnel," Jones, R. and A. H. Bell,

Great Britain Aeronautical Research Council, Reports and Memoranda
No., 2101. June 1939.

NPL Aerofoil Catalogue and Bibliography, by Pankhurst, R. C. 1952,
CP No. 81, July 14, 1951, Great Britain Aeronautical Research
Committee,

NPL Aerofoil Catalogue and Bibliography, by Pankhurst, R. C.

R&M No, 3311, March 1962, issued 1963, Great Britain Aeronautical
Research Committee.
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APPENDIX D
ILLUSTRATIONS

— Figures in the following pages are presented as cited in this report.
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Plenum Chamber
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- 323.5:
o 293.5%

263' O
E
=
%

243.5° 193.5°

— 219°

Station 2
(Stator Inlet)

Station 1
(Inlet Guide Vane Exit)

O Wall Static Pressure
0 Temperature

® Kiel Probe

& Wake Probe

A Traverse Probe

169.5°

Station 3A
(Stator Exit)

Figure III-6. Instrumentation, Plenum Chamber FD 14975A
and Stations 1, 2, and 3A
(View Looking Downstream)
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Figure V-4. Dye Injection Pattern, Unslotted FD 15001A
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